Error estimates for large-scale ill-posed problems
نویسندگان
چکیده
منابع مشابه
Interpretations and estimates for ill-posed problems
Following a discussion of the relation of these problems to applications , intended to clarify the considerations which must be handled in order to obtain genuinely useful results, we consider techniques for determining optimal approximationss and consequent optimal error bounds for certain classes of ill-posed problems with appropriate a priori information.
متن کاملProjected Tikhonov Regularization of Large-Scale Discrete Ill-Posed Problems
The solution of linear discrete ill-posed problems is very sensitive to perturbations in the data. Confidence intervals for solution coordinates provide insight into the sensitivity. This paper presents an efficient method for computing confidence intervals for large-scale linear discrete ill-posed problems. The method is based on approximating the matrix in these problems by a partial singular...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملError estimates for stabilized finite element methods applied to ill-posed problems
We propose an analysis for the stabilized finite element methods proposed in [2] valid in the case of ill-posed problems for which only weak continuous dependence can be assumed. A priori and a posteriori error estimates are obtained without assuming coercivity or inf-sup stability of the continuous problem. Résumé Estimations d’erreurs pour des méthodes d’éléments finis stabilisées appliquées ...
متن کاملGreedy Tikhonov regularization for large linear ill-posed problems
Several numerical methods for the solution of large linear ill-posed problems combine Tikhonov regularization with an iterative method based on partial Lanczos bidiagonalization of the operator. This paper discusses the determination of the regularization parameter and the dimension of the Krylov subspace for this kind of methods. A method that requires a Krylov subspace of minimal dimension is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Algorithms
سال: 2008
ISSN: 1017-1398,1572-9265
DOI: 10.1007/s11075-008-9244-1